Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29561, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665583

RESUMO

The rapid exhaustion of fossil fuels and the ozone depletion caused by the excessive usage of the fossil fuels has prompted researchers to look towards bioinspired designs for both propulsion and energy extraction purposes. Limited amount of work has been done to present the effects of airfoil shape on the aerodynamic forces on flapping foils. In this paper, we examine in detail the effect of airfoil camber and its position on flapping foil performance in both energy extraction and propulsion regimes. We also examine the effect of reflex camber on flapping foil performance in both flow regimes. In total, 42 airfoils are analyzed using the NACA 4 and 5-series cross-sections. The man objective of this research is to identify a trend, between airfoil shape and aerodynamic forces. The database created as a result will be used in the future work for designing a hydrokinetic turbine and a bio-inspired unmanned aerial vehicle. The results from the numerical simulations indicate that the airfoil shape has significant effects on the time averaged drag force on the airfoil in both flow regimes. However, the time averaged lift force remains negligible for all cases.

2.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687670

RESUMO

Buildings use a significant percentage of the total energy consumed worldwide. Striving for energy conservation within buildings is of prime concern for researchers. Hence, scientists are aggressively exploring new energy storage and supply methods to reduce exorbitantly fluctuating energy demands and increase the share of renewable energy in building energy consumption. Solar systems that incorporate phase change materials (PCMs) for thermal storage have significant potential to serve in this context. These systems are not yet able to endure the significant energy demands, but they are being continually improved. The aim of this paper is to explore the existing solar PCM systems that are being studied or that are installed for use in indoor heating/cooling. As per the outcome of this systematic review, it has been observed that when coupled with solar thermal energy, the configuration of PCMs can either use passive or active techniques. Passive techniques are usually less efficient and more costly to implement in a building structure, resulting in active heat exchangers being widely implemented with better technical and economic results. At the same time, it has been observed that for most domestic buildings, organic PCMs with phase change temperatures of up to 42 °C and thermal conductivities of up to 0.56 W/m.K are most suitable for integration in solar thermal energy production. Hybrid systems are also commonly used for larger commercial buildings, in which the solar PCM system (SPCMS) provides a fraction of the total load. Additionally, the Stefan number is the most common technical parameter that is used to assess this performance, along with the effective thermal conductivity of the PCM after using enhancement techniques. The key economic indicator is annual savings per year, with most SPCMSs having a payback period of between 6 to 30 years. This review provides designers and researchers with key insights in terms of formulating a basis in the domain of coupling PCMs with solar thermal energy, especially within non-industrial buildings.

3.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050124

RESUMO

The current electronics industry has used the aggressive miniaturization of solid-state devices to meet future technological demands. The downscaling of characteristic device dimensions into the sub-10 nm regime causes them to fall below the electron-phonon scattering length, thereby resulting in a transition from quasi-ballistic to ballistic carrier transport. In this study, a well-established Monte Carlo model is employed to systematically investigate the effects of various parameters such as applied voltage, channel length, electrode lengths, electrode doping and initial temperature on the performance of nanoscale silicon devices. Interestingly, from the obtained results, the short channel devices are found to exhibit smaller heat generation, with a 2 nm channel device having roughly two-thirds the heat generation rate observed in an 8 nm channel device, which is attributed to reduced carrier scattering in the ballistic transport regime. Furthermore, the drain contacts of the devices are identified as critical design areas to ensure safe and efficient performance. The heat generation rate is observed to increase linearly with an increase in the applied electric field strength but does not change significantly with an increase in the initial temperature, despite a marked reduction in the electric current flowing through the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...